7.4 Робота в електростатичному полі. Різниця потенціалів. Потенціал. Циркуляція вектора напруженості електростатичного поля

Нехай в деякому електростатичному полі переміщується заряд q із точки 1 в точку 2 (рис.7.18). На заряд діє сила  . Тоді елементарна механічна робота

Загальна робота знаходиться шляхом інтегрування

(7.25)

де  α – кут між вектором  і напрямком переміщення 

Для однорідного поля (7.26)

Покажемо, що робота в електричному полі не залежить від форми шляху, а визначається тільки зарядом q і положеннями початкової і кінцевої точок та напруженістю електричного поля  .

Нехай в однорідному полі напруженістю  переміщується заряд q двома способами (рис.7.19): по прямій 1-2 і по ломаній 1-3-2. Знайдемо роботу електричного поля в обох випадках.

Одержали однакову роботу. А це й означає незалежність роботи від форми шляху. Якщо ж поле неоднорідне, то аналогічні міркування виконуються для нескінченно малих відрізків, на яких можна вважати поле однорідним. Загальна робота дорівнює сумі робот на кожному із цих відрізків. Ясно, що якщо на кожному із них робота не залежить від форми шляху, то і сумарна робота не буде залежати від форми шляху.

Якщо  в (7.25) віднести роботу до заряду q, то воно уже не буде залежати від величини заряду, а буде визначатись тільки положенням початкової і кінцевої точок та напруженістю поля. Це дає можливість ввести нову енергетичну характеристику поля: потенціал і різницю потенціалів. Із (7.25) одержуємо

(7.27).

– різниця потенціалів, дорівнює роботі, яку виконують сили електростатичного поля при переміщенні одиночного позитивного заряду із точки 1 в точку 2.

Отже робота в електростатичному полі дорівнює добуткові заряду на різницю потенціалів вихідної і кінцевої точок

(7.28)

Якщо точку 2 віддалити у нескінченність, де поле відсутнє, одержуємо потенціал

.(7.29)

Потенціал – це робота сил електричного поля по переміщенню одиничного позитивного заряду із даної точки поля r в нескінченність, де потенціал поля прийнятий за нуль. Потенціал і його різниця вимірюються у вольтах (В)

Криволінійний інтеграл по замкнутому контуру  називається циркуляцією вектора напруженості. Враховуючи (7.27), видно, що такий інтеграл дорівнює нулю (початкова і кінцева точки переміщення заряду співпадають φ1 = φ2).  Умова  є необхідною умовою потенціального характеру поля.

Знайдемо потенціал поля точкового заряду. За означенням

Будемо переміщувати пробний заряд qo по радіальній лінії (рис.7.20). Тоді кут α = 0о і з врахуванням (7.16) одержуємо

(7.30)

Для потенціалу, як і для напруженості (розділ 7.2), справедливий принцип суперпозиції:

(7.31)

потенціал поля, створеного декількома зарядами, дорівнює алгебраїчній сумі потенціалів, створених у цій точці кожним зарядом. Якщо тіло не точкове, то сума (7.31) переходить в інтеграл

 

 

You must be logged in to post a comment.

Фізика