При протіканні струму по будь-якому контуру створюється магнітне поле, лінії індукції якого пронизують площу S цього ж самого контура (рис.9.23). Магнітний потік у цьому випадку називається потоком самоіндукції
(9.35)
Проекцію вектора індукції на нормаль до поверхні запишемо із закону Біо-Савара-Лапаласа (9.4) і принципу суперпозиції (9.8)
(9.36)
Тоді потік самоіндукції
(9.37)
Коефіцієнт пропорційності між потоком самоіндукції і струмом
(9.38)
залежить тільки від геометричних розмірів контура (S, ℓ, r) і магнітних властивостей середовища (μ, μо) і називається індуктивністю контура. За одиницю вимірювання індуктивності в СІ взято Генрі на честь амер. фізика Д.Генрі (1799-1878). Це інтуктивність такої котушки, в якій при зміні струму зі швидкістю 1 А/с виникає е.р.с. самоіндукції 1В.
Якщо маємо не один виток, а N, то індуктивність буде в N разів більшою, тобто будемо мати справу з потокозчепленням самоіндукції
(9.39)
Зважаючи на складність розрахунку поверхневого і криволінійного інтегралів за формулою (9.38), індуктивність розраховують простіше із застосуванням теореми Остроградського-Гауса і закону повного струму.
Приклад 1. Розрахуємо індуктивність соленоїда (див.рис.9.14). Знайдемо потокозчеплення самоіндукції, врахувавши (9.15), (9.25) і (9.39),
Звідки індуктивність (9.40)
Для довгого соленоїда (9.41)
Приклад 2. Розрахуємо індуктивність тороїда, осердя якого показано на рис.9.24. Знайдемо потік індукції через елементарну площу перерізу осердя dS=h∙dr (на рис. заштрихована). Згідно з (9.6) і (9.24) індукція
,
магнітний потік
потокозчеплення самоіндукції
Отже індуктивність тороїда
(9.42)
Формули індуктивності (9.41) і (9.42) показують , що вона залежить від геометричних розмірів котушок і магнітних властивостей осердя і не залежить від струму.
Явище самоіндукції заключається у виникненні е.р.с. і індукційного струму в тому ж самому контурі, який є джерелом змінного магнітного поля. По закону Фарадея (9.33) е.р.с. самоіндукції
(9.43)
прямо пропорційна індуктивності і швидкості зміни струму.