6.27 Рідини. Явища в рідинах

По характеру руху молекул і сил взаємодії між ними рідини займають проміжне положення між газами і твердими тілами. В рідинах молекули протягом певного часу здійснюють коливання навколо тимчасового положення рівноваги. Цей час називається часом осідлого стану молекули. Потім молекула перескакує в інше положення рівноваги (рис.6.37). Ці хаотичні переходи нагадують рух молекул газу, а коливальний рух – рух атомів у твердих тілах.         Для рідин характерний ближній порядок в розміщенні молекул. Це означає, що розміщення найближчих сусідніх молекул однакове для всіх молекул. Але по мірі віддалення такий порядок порушується. Твердим же кристалічним тілам характерний дальній порядок в розміщенні молекул. У зв’язку з цим для кристалів має місце анізотропія властивостей (різні властивості в різних напрямках), а для рідин характерні ізотропні (однакові в різних напрямках) властивості. Але існують так звані рідкі кристали, названі так із-за анізотропії своїх властивостей, яка зумовлена анізотропією властивостей окремих молекул, а не дальнім порядком в їх розміщенні. Молекули рідких кристалів уявляють собою довгі ланцюги полімерних сполук. При паралельній одна одній орієнтації молекул і виникає анізотропія.

В рідинах спостерігаються ряд специфічних для них властивостей:

1) поверхнева енергія; 2) сила поверхневого натягу; 3) поверхневий тиск; 4) змочування і незмочування 5) капілярні.

Розглянемо кожне із них.

Поверхнева енергія. Розглянемо сили, які діють з боку сусідніх молекул на дві молекули рідини (рис.6.38): об’ємну (А) і поверхневу (В). Оточення об’ємної молекули А симетричне, тому рівнодіюча сил дорівнює нулю. На поверхневу молекулу В діють сили з боку рідини більші, ніж з боку газу. Виникає рівнодіюча сила, направлена всередину рідини. Отже для переведення молекули з об’єму на поверхню необхідно виконати роботу проти цієї рівнодіючої. Ця робота перетворюється в потенціальну енергію поверхневих молекул.

Поверхнева енергія US дорівнює різниці енергії поверхневих молекул і енергії такої ж кількості об’ємних молекул. Ясно, що вона пропорційна кількості поверхневих молекул, тобто площі поверхні рідини S

(6.78)

Тут   – коефіцієнт поверхневого натягу, для кожної рідини величина стала, але залежить від температури і домішок.

– Сила поверхневого натягу. Відомо (розділ 4.7), що стійкою рівновагою системі є стан з мінімальною потенціальною енергією. Тому рідина має тенденцію зайняти стан з мінімальною площею поверхні, тобто скоротитись. Це приводить до виникнення сили поверхневого натягу, яка діє вздовж межі поверхні по дотичній до неї. Знайдемо величину цієї сили F. Нехай на прямокутну рамку з рухомою стороною  натягнута плівка рідини (рис.6.39). Розтягнемо плівку силою F на відстань х. Таке розтягування фактично є не що інше, як процес переводу молекул із об’єму рідини на поверхню. Буде виконана робота А = F∙x, яка дорівнює збільшенню поверхневої енергії

Одержуємо для сили поверхневого натягу

(6.79)

Силою поверхневого натягу рідина уже стиснута. Цим і пояснюється погана стискуваність рідин.

Поверхневий тиск. Коли поверхня рідини викривлена (утворився меніск), її площа більша, ніж плоскої поверхні і поверхнева енергія не мінімальна. Тенденція поверхні до скорочення приводить до виникнення сили, яка направлена до центру кривизни поверхні. Виникає поверхневий тиск РS (рис.6.40). Знайдемо його величину на прикладі краплини рідини, яка має форму кулі радіусом R (таку форму буде мати рідина у стані невагомості). Уявно розріжемо її діаметральною площиною (рис.6.41). Вздовж лінії перерізу (кола) діє сила поверхневого натягу  , яка і стискує дві півкулі. Ця сила розподіляється по площі перерізу 

(6.80)

Тут  – кривизна сферичної поверхні. Якщо ж поверхня не сферична, то її кривизна визначається як півсума обернених радіусів кривизни R1 і R2 ліній перетину цієї поверхні двома будь-якими взаємно-перпендикулярними площинами (рис.6.42)

(6.81)

Наприклад, для циліндричного меніска (рис.6.43) кривизна

Явище змочування і не змочування. На поверхневу молекулу, яка межує з поверхнею твердого тіла і газом діють сили: Fт.р – на межі тверда поверхня-рідина;  Fт..г – на межі тверде тіло-газ;  Fр..г – на межі рідина-газ (рис.6.44). Умовою рівноваги цієї молекули є рівняння

(6.82)

де θ – крайовий кут – це кут між дотичною до поверхні та межею між рідиною і твердою поверхнею, відрахований в середині рідини. Із (6.82)

В залежності від співвідношення сил, крайовий кут може мати значення від 0о до 180о. Якщо кут 0о ≤ θ < 90о гострий, рідина змочує поверхню (рис.6.45,а). Якщо ж  кут 90о ≤ θ ≤180о тупий, рідина не змочує поверхню (рис.6.45,б). Саме явище змочування чи незмочування твердої поверхні і є причиною викривлення поверхні рідини, тобто утворення меніску.

– Капілярні явища – заключаються у зміні рівня рідини у вузьких каналах (капілярах) порівняно з її рівнем у широкій посудині (рис.6.46). Рідина піднімається, або опускається за рахунок поверхневого тиску меніску рідини, який утворюється при змочуванні чи не змочуванні рідиною поверхні капіляру. Зміна висоти рівня припиняється тоді, коли поверхневий тиск зрівноважується гідростатичним тиском стовпчика рідини  . (ρ – густина рідини).  Отже, різниця рівнів рідини в капілярі (6.83)

Кривизну меніска знайдемо через геометричні розміри капіляра і крайовий кут.

У циліндричному капілярі меніск має сферичну поверхню, кривизна якої  . Із рис.6.46 знаходимо  . Таким чином, для циліндричного капіляра

(6.84)

Якщо капіляр утворений двома паралельними площинами, відстань між якими r, меніск має циліндричну поверхню.

Тому кривизна а висота (6.85)

 

 

 

 

You must be logged in to post a comment.

Фізика